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Abstract

To mitigate the impact of different perspectives, we develop quadruple-directional deep learning networks that extract quadruple-
directional deep learning features.

(Quantum Dot Difference Deep Learning Fuzzer) of vehicle photos to boost vehicle re-identification accuracy. Overall, the quadruple
directional deep learning networks have the same fundamental deep learning architecture as their two-dimensional counterparts, with
the exception of the feature pooling layers, which are oriented in opposite directions. To be more specific, in the first step, basic feature
maps of an input square car picture are extracted using the same fundamental deep learning architecture, a briefly and densely linked
convolutional neural network. When it comes to compressing the basic feature maps into horizontal, vertical, diagonal, and anti-
diagonal directional feature maps, the quadruple directional deep learning networks use different directional pooling layers, i.e.
horizontal average pooling layer, vertical average pooling layer, diagonal average pooling layer, and anti-diagonal average pooling
layer. Finally, a quadruple directional deep learning feature is constructed from these spatially normalized feature maps of vehicle
orientation for re-identification. Extensive studies using the VeRi and VehicleID databases demonstrate that the proposed QD-DLF
methodology outperforms a number of existing, state-of-the-art vehicle re-identification approaches.

Computer vision, artificial neural networks, feature extraction, and image classification are some of the related concepts that might be
used as index terms.

INTRODUCTION

As a crucial part of video surveillance's function in VeRi [1, 2] and VehicleID [3], to help with the

maintaining public safety, vehicle re-identification
seeks to pair together images of the same vehicle
taken by separate cameras.

because cars and trucks have always been crucial to
human existence [1]. Vehicle re-identification is an
extremely difficult computer vision issue in real-
world circumstances owing to the many detracting
features of vehicle pictures, such as perspective
movement, light change, blur, occlusion, and poor
resolution (see Fig. 1). As a result, research into
ways to improve existing vehicle re-identification
techniques has increased.

The Institute of Digital Media at Peking University
has produced two sizable benchmark datasets,

issue of vehicle re-identification.

As you'll see in Section II below, several different
approaches to vehicle re-identification were created
using these two datasets. Remember that
automobile photographs are often acquired under
varied camera perspectives, making viewpoint
variation the most significant issue and frequently-
encountered aspect among those above-mentioned
unfavorable ones. In order to improve the
efficiency of vehicle re-identification, this research
focuses on developing a way to cope with
unfavorable perspective fluctuations.

In order to improve the performance of vehicle re-
identification, we suggest using quadruple
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directional deep learning features (QD-DLF) to
completely characterize vehicle photos.

The following are the primary innovations and
contributions of the suggested approach: In order to
detect cars, the suggested technique (1) makes the
first effort to develop quadruple (i.e. horizontal,
vertical, diagonal, and anti-diagonal) directional
average pooling procedures for collecting
quadruple directional deep features. This is in line
with human intuition, which holds that more
information is preferable when trying to recognize
an item from all angles; (2) The suggested
technique uses quadruple directional deep networks
of moderate depth (i.e., 16 convolutional layers),
all of which may be trained separately. As a result,
the suggested quadruple directional deep networks
provide a versatile framework, while the proposed
single directional deep networks may be simpler to
train.

Fig. 1. Classical vehicle samples from the VeRi [1] database. Each row
denotes the same vehicle captured by cameras from different viewpoints.

a more parallel training technique than other
ultra-deep networks; (3) Extensive tests on two
large-scale datasets, whereby intuitive findings
and analysis are presented performed to
demonstrate that the suggested technique
outperforms many existing methods considered to
be state-of-the-art.
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The remaining sections of this work are laid out
as follows. The relevant literature is presented in
Section II. In Section III we discuss the suggested
triple directional deep learning features for
vehicle reidentification.

Section IV provides experimental findings that
support the superiority of the suggested strategy.
The last section of this article summarizes the
findings.

RELATED WORKS

Here, we take a quick look back at how vehicle re-
identification has progressed so far. In order to
successfully  re-identify a  vehicle, feature
representation and similarity metric play crucial
roles.

Two key areas of research into vehicle re-
identification have been conducted so far: (1)
feature representation for vehicle re-identification
and (2) similarity metric for vehicle re-
identification.

A. Feature Representation for Vehicle Re-
Identification

There are two primary types of feature
representation techniques that may be used for re-
identifying vehicles: those that are created
manually, and those that are learned using machine
learning. For characteristics like LOMO [4] and
BOWCN [5] that were developed for re-identifying
people are also being utilized to identify cars.
Famous deep feature learning networks like
AlexNet [6], VGGNet [7], and GoogLeNet [8],
ResNet [9], and [10] are employed as feature
extractors for vehicle re-identification using deep
learning feature representations. Feature extraction
for automobiles is only one use of AlexNet [6]. The
feature extractor used by NuFACT [1] is
GoogLeNet [8]. Car characteristics are extracted
using VGGNet [7] by the DRDL [3]. A additional
finding is that deep learning characteristics clearly
excel. Characteristics added by hand to the VeRi
and VehicleID databases, as detailed in [1], [2], and
[3]. In order to get accurate feature representations
for discrimination,

When training deep learning based vehicle re-
identification models using photos of vehicles,
many different loss functions are used. Deep joint
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discriminative learning (DJDL) [11] is one such
approach, and it involves concurrently training a
convolutional neural network with identification,
verification, and triplet loss functions to extract
discriminative feature representations of vehicle
pictures.

For the purpose of learning deep feature
representations of vehicle pictures, we propose an
enhanced version of the triplet convolutional neural
network [12] by combining the classification-
oriented loss function with the original triplet loss
function. All of the aforementioned deep learning
characteristics [6-8], [11, 12] are taught by a
network that has many complete connection layers,
making them holistic. While these deep learning
approaches have greatly advanced the field of
vehicle re-identification, they still lack a tailor-
made answer to the critical problem of dealing with
perspective fluctuations.

n [13], the adversarial bi-directional long short-
term memory (ABLN) network is developed for
better addressing perspective fluctuations. ABLN
leverages the adversarial architecture to improve
training and makes use of LSTM to simulate
transformations across continuous view changes of
a vehicle. Therefore, learning to estimate the
distance between two cars with arbitrary views
requires inferring a global vehicle representation
comprising all views' information from just one
visible view. In [14], similar to ABLN, the spatially
concatenated convolutional network (SCCN) and
the CNN-LSTM bi-directional loop (CLBL) are
developed to tackle the difficulty created by
different points of view.

However, a vehicle dataset with photos of each
vehicle from several different cameras is required
for ABLN [13], SCCN [14], and CNNLSTM [14].
Practical video surveillance systems have a hard
time acquiring this, though.

In light of this, there is still a lot of space for
vehicle re-identification if we take into account the
various perspectives available.

B. A Similarity Metric for Re-Identifying Vehicles

As is the case with many face recognition
algorithms [15, 16], FACT [2] use the Euclidean or
Cosine distance between a pair of vehicles defined
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using deep learning characteristics to quantify the
resemblance.

In addition, NuFACT [1] determines, in the
discriminative null space [17], the Euclidean
distance between the query and gallery car photos.
Also, a deep relative distance learning strategy is
proposed in DRDL [3]. Using a two-branch
convolutional neural network, we turn the raw car
pictures into a Euclidean space, and then we utilize
the distance between any two vehicles as a direct
assessment of their similarity.

Additionally, strategies for multi-modal vehicle re-
identification are offered as a means of enhancing
vehicle similarity metrics. The progressive and
multi-modal vehicle re-identification (PROVID)
[1] is one such method that has been developed to
improve the precision of vehicle searches. When
doing a coarse search, the PROVID approach uses
the NuFACT approach as a starting point.
Consequently, it's an excellent

THU o ol VEHICLE RE-DENTIFICATION USING QD-DLF
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searching predicated on a methodology for
verifying the legitimacy of car license plates to
boost re-identification precision. Not only that, but
the siamese convolutional neural network) is a two-
stage structure.

Siamese convolutional neural network (CNN) and
path long short-term memory (LSTM) network [18]
significantly regularizes vehicle re-identification
results by including complicated spatial-temporal
information. Multi-modal vehicle re-identification
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algorithms, on the other hand, obviously need the
additional vehicle data (such as a license plate or
spatial-temporal information) and computing
burden.

VEHICLE RE-IDENTIFICATION BASED ON
QUADRUPLE
DIRECTIONAL DEEP

FEATURES

LEARNING

Quadruple Deep Feature Learning Networks

The suggested method is shown in Fig. 2 and is
made up of four different kinds of deep feature
learning networks (HDFLN, for short).

VDFLN (and DDFLN and ADFLN) Each
directional deep feature learning network includes
the basic deep feature learning architecture
(BDFLA), a directional average pooling layer, and
a spatial normalization (SN) layer.

Simple Deep Feature Learning Architecture 1) As
can be seen in Fig. 2, the basic deep feature
learning architecture (BDFLA) is implemented
using a convolutional neural network that is both
short and densely linked [19]. This network is built
from a series of SDUs and a max-pooling layer.
Convolutional, batch normalization, and Leaky
ReLU [20, 21] layers are omitted from this
explanation for clarity.Concatenated in a logical
order to form a CBLR block (Fig. 2) (a). Three
CBLR blocks are then tightly coupled with two
concatenation layers (CAT1 and CAT2) to
construct a compact and dense unit (CDU), as seen
in Fig (b). The input photos are stacked in a
channel-by-channel fashion in each concatenation
layer. The fundamental deep feature learning
architecture is constructed by encapsulating one
convolutional layer (i.e., Conv0), a batch
normalization, five SDUs (i.e., SDU1-SDUS), and
five max-pooling layers (i.e., MP1-MP5) in turn.

Second, quadrupolar average pooling layers:
Quadruple directional (i.e. horizontal, vertical,
diagonal, and anti-diagonal) average pooling layers
are created to characterize vehicle pictures from all
four directions. Under the assumption that the
BDFLA generates X ddc basic feature maps, where
d and c are the height/width and channel sizes. In
order to characterize the newly constructed
quadruple directional average pooling layers, we
say the following.
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Horizontal Average Pooling (HAP) Layer:

The HAP layer averages each row of X into a single
point to obtain the horizontal average pooling
feature map P € dxlxc, as shown in Fig. 3. For
example, 41 is equal to the average of 1, /2, /3 and

/4, thatis, hl =14 (f1 + 2+ 3 + f4).
Vertical Average Pooling (VAP) Layer:

The VAP layer averages each column of X €
_dxdxc into a single point to obtain the vertical
average pooling feature Q € _1xdxc, as shown in
Fig. 3. Note that Q is transposed into Ot € _dx1x%c
in a practical testing process to make the dimension
of Ot be compatible with that of P (i.e., the output
of the HAP layer). For instance, v4 is equal to the
average of 4, /8, f12 and f16, that is, vl = 14 ( f4 +
8+ /12 +f16), as show in Fig. 3
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Fig. 3. The schematic diagram of horizontal and vertical average pooling
operations.
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Fig. 4. The schematic diagram of diagonal and anti-diagonal average pooling
operations.

Diagonal Average Pooling (DAP) Layer:

The DAP layer averages multiple elements of the
feature map X € _dxdxc according to the diagonal
direction, as shown in Fig. 4. For example, d6 is
equal to the average of /9 and f14, thatis, d6 =12 (

9 +114).

Anti-diagonal Average Pooling (AAP) Layer:
The AAP layer averages multiple elements of the
feature map X € _dxdxc according to the anti-
diagonal direction, as shown in Fig. 4. For instance,
a4 is equal to the average of f4, /7, f10 and f13, that
is, a4 = 14 ( f4 + f1 + f10 + f13). Since all the
above-mentioned HAP, VAP, DAP and AAP layers
use a average pooling operation, the forward and
backward propagations are briefly introduced as
follows. Assume that the input feature map of an
average pooling layer is X = [X1, X2, . . ., Xd] €
_dxd , the average pooling window size is d X 1,
and the output feature mapis Y € _1xd =[yl, y2, ..
., yd ]. Then, the forward propagation of this
average
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pooling layer is calculated as follows:

[
.‘r'r'=EZIXEj‘ (1)
JI=

where y; is the i-th element of ¥ Xj; is j-th element of i-th
column vector of X. According to the chain rule, the backward
propagation of this average pooling layer can be calculated as
follows:
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where Xi = [Xil, Xi2, . . ., Xid |T is i -th column
vector of X; J is the objective function (i.e., Eq. (6))
of the overall learning framework and will be
discussed in the following subsection.

3) Spatial Normalization Layer: As shown in Fig.
2, a spatial normalization (SN) layer is exploited to
follow each directional average pooling layer. It is
to make each dimension of the directional average
pooling feature maps unified distributing in [0, 1),
which is beneficial to prevent a specific dimension
whose value is too predominant. Assume that the
input of a SN layer is P € _dxc. Then, the
corresponding output Z of the SN layer can be
calculated as follows:

Pt
I} = =, @
\!."lll + zfeﬁj (ij}z

where Z% is j-th element of the k-th feature map of Z, P
represents the j-th element of the k-th feature map of ﬁ’
and Nj is the neighborhood size.

The backward propagation of the SN layer can be formu-
lated as follows:
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Quadruple deep feature learning networks are
built on top of the aforementioned basic
network and include an additional SN layer
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and four directional average pooling layers
(QDFLNs) are built, as seen in Fig. 2; they
include the horizontal (HDFLN), vertical
(VDFLN), diagonal (DDFLN), and anti-
diagonal (ADFLN) variants of the deep feature
learning network.

Table I details the suggested settings for the
proposed QD-DLF technique. Conv0, SDUI,
SDU2, SDU3, SDU4, and SDUS5 each have 64
channels, whereas SDU2 has 128, SDU3 has
192, SDU4 has 256, and SDUS5 has 320
channels. The other layers' ranges are all 0.15,
however SDUS5's Leaky ReLU layer's range is
0. A filter size is indicated by the size of the
Conv0 and SDU sub-window.

ZHU et al: VEHICLE RE-IDENTIFICATION USING QD-DLF
TABLE 1
THE PARAMETER CONFIGURATION OF THE PROPOSED QDFLNS
Name |Channels Scope of | Sub-window Stride|  Output Size
Leaky ReLU| (h % w)

Convll] 64 (.13 Ix3 1 (128 = 128 x G4
5DUL| 64 0.15 Ixd 1 |128 x 128 = 64
MP1 64 - 3x3 2 G4 x 64 x 64
sDU2| 128 0.15 Ixd 1|64 =64 %128
MP2 128 - 3xd 2 |32x 32 %128
spuU3| 192 0.15 Ixd 1 |32=32x102
MP3 192 - dxd 2| 16w 16 = 192
SDU4| 256 0.15 axd 1|16 = 16 x 256
MP4 256 - 3xd 2 8 % 8 x 256
sDus| 320 0 3x3 1 & x B x 320
MP3 320 - 3x3 2 4 x4 % 320
HAP 320 - 1x4 1 4 x 1 x 320
VAP 320 - 4% 1 1= 4% 320
DAP 320 - 4 1 Tx1x320
AAP 320 1 Twlx320

It refers to a pooling window size for the
pooling  layers (MPI-MP5) and a
normalization window size for the spatial
normalization (SN) layers.

The filters used by Conv0 and the subsequent
five SDUs (SDUI1-SDUS) are all 3x3. The
pooling windows of the five maximum-pooling
layers are each 3 by 3. As can be seen in Fig.
4, the HAP and VAP levels of the quadruple
directional average pooling architecture have
pooling window widths of 1 4 and 41, whereas
the DAP and AAP layers can only pool a
maximum of 4 eclements. In all spatial
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normalization layers, the neighborhood size
(i.e., Njin Eq. (4)) equals 4.

Additionally, only strides functioning on the
five MP layers are assigned a value of 2 pixels,
while all other strides are assigned a value of 1
pixel. Finally, the reasons why the directional
average pooling layers are helpful for reducing
perspective  variances are as follows.
According to the suggested technique, a
vehicle image I of size 1281283 (i.e.,
heightwidthchannel) is converted into a feature
map X of size 44320 using the basic deep
feature learning architecture (BDFLA). To
illustrate, let's look at the HAP layer, or
horizontal average pooling. In order to create
the output feature map P of 41320, HAP first
gets the average of each row of the input
feature map X. Each element of the output
feature map P is a stable feature (i.e., the mean
value of each low) that is derived from the
whole horizontal region of the input picture
being covered by a broad horizontal stripe
reception field (i.e., heightwidth=32128).
Because of this, the suggested HAP is less
likely to suffer from visual shifts due to shifts
in the observer's horizontal perspective. The
suggested directional average pooling layers of
the vertical Average pooling (VAP), diagonal
Average pooling (DAP), and anti-diagonal
Average pooling (AAP) all share similar
findings and interpretations. Aside from in
other words, the suggested directional average
pooling layers are more resistant to the visual
shifts brought on by the accompanying shifts
in  perspective.  Accordingly, four-way
directional. The suggested technique averages
pooling layers to provide a four-dimensional
overview of an input picture.

Useful Purpose
The objective function of the proposed

approach is constructed using the softmax
function, as in [15], [22], and as shown below:
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B. Objective Function

Similar to [15] and [22], the softmax function is utilized to
build the objective function of the proposed method, as fol-

lows:
I i i . W, Tyk)
ffW)=—| '.Pf_\'l '=c'}logﬁ|
Ko a Ty
I 3
+Ea Wiy, (6
where W = [W, Wa, ..., Wel € M€ s the projection

matrix used to predicate a vehicle’s class label, X' is the deep
learning feature of k-th training sample, v € {1,2,3,..., C)
1s the corresponding class label, @ is a constant used to
control the contribution of the L3 regulanzation item, K and C
represent the numbers of the training samples and classes,
respectively, and £(-) is an indicator function.

EXPERIMENT AND ANALYSIS

The suggested quadruple directional deep learning
feature (QD-DLF) technique is shown to be better
by being compared to other state-of-the-art
approaches tested on the complex VeRi [1] and
VehicleID [3] databases In our research, we use the
Euclidean distance to determine the degree to
which two vehicles characterized using four
distinct layers of deep learning characteristics are
similar. The performance is evaluated using the
cumulative match curve (CMC) [23, 24] and the
mean average precision (MAP) [5, 25], both of
which are widely used in the re-identification
sector. The CMC illustrates the percentages of
correctly identified queries over a range of
candidate list sizes. As a measure of general
effectiveness, the MAP is invaluable.

Average precision is determined by summing the
areas under the precision-recall curve for each
query (AP). The mean absolute performance
(MAP) of a re-identification approach is then
evaluated by averaging the APs of all queries,
taking into account both accuracy and recall.

Training Configuration

Matconvnet [26], CUDA 8.0, CUDNN V5.1,
MATLAB 2014, and Visual Studio 2012 are the
experimental software we used. The gear in
question is a workstation. a 2.80 GHz Intel Xeon
E3-1505 M v5 processor, a Titan X graphics
processing unit, and 128 GB of DDR3 RAM. In
addition, the following is a summary of the chosen
training conditions that are comparable to those
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described in [24] and [27]. The photographs in
these two collections have all been reduced in size
to 128 by 128, and have had the horizontal mirror
and random rotation procedures applied to them. A
random rotation is performed on a picture between
the coordinates [3], where no rotation is performed,
and [0, 3], when rotation is performed at random.
How much each element weighs When conducting
our experiments, we made use of Matconvnet [26],
CUDA 8.0, CUDNN V5.1, MATLAB 2014, and
Visual Studio 2012. A workstation is the piece of
equipment in issue equipped with a 2.80 GHz Intel
Xeon E3-1505 M v5 CPU, a Titan X GPU, and 128
GB of DDR3 RAM. In addition, a synopsis of the
selected training conditions that are analogous to
those in [24] and [27] is provided below. These two
sets of images have all been resized to 128x128,
with the horizontal mirror and random rotation
processes performed. An image is rotated at
random between the coordinates [3], where no
rotation is applied, and [0, 3], when random
rotation is applied. Just how much everything
weighs

Databases

Twenty cameras record VeRi [1] in unrestricted
traffic settings, with two to eight cameras capturing
each vehicle from a variety of angles, lighting
conditions, occlusions, and resolutions.

There are a total of 37,781 photos from 576 people
in the VeRi dataset's training subset, and 13,257
images from 200 patients in the testing subset. In
order to do the assessment, we first apply the query
to a single picture of each vehicle taken by each
camera. This yields a query set of 1,678
photographs of 200 subjects and a gallery of 11,579
images of 200 subjects. If a probe picture and a
gallery image were taken from the same camera
perspective, the matching result for the probe
image will not be included in the final performance
assessment; only the cross-camera vehicle re-
identification is measured.

Multiple daylight VehicleID [3] images are
recorded by a network of real-world surveillance

cameras placed strategically around a small city in
China.

The whole collection contains 221,763 photos of
26,267 persons. Images of vehicles are taken from
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either the front or the rear. Thirteen thousand and
three hundred and forty-four participants are
represented in the 110,178 photos that make up the
training subset. Additionally, VehicleID offers
three testing subsets, namely Test800, Test1600,
and Test2400, for evaluating the effectiveness at
varying data sizes. Specifically, Test800 has 6,532
probe photos and 800 gallery images. In all, 1,600
participants are represented in Test1600's 11,395
probe photos and 1600 gallery photographs. There
are 2,400 gallery photos and 17,638 probe images
in total for the Test2400 dataset.

Assessing Efficiency

A Look at VeRi's Comparison Table II displays the
results of a comparison between the proposed QD-
DLF and other state-of-the-art approaches using the
VeRi database. Among all the approaches studied,
the suggested QD-DLF is shown to achieve the
greatest MAP (i.e, 61.83%) and rank-1
identification rate (i.e., 88.50%). Some further
considerations are made below.

The proposed QD-DLF method consistently
outperforms NuFACT + Plate-SNN [1], NuFACT
+ Plate-REC [1], PROVID [1], and Siamese-
CNN-+Path-LSTM [18] in terms of MAPs, rank-1
identification rates, and rank-5 identification rates
for vehicle re-identification. While the rank-5
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Although the suggested QD-DLF method's rate
is somewhat lower than that of PROVID [1], it
achieves substantially better MAP and rank-1
identification rate, and is thus more effective.

Second, the suggested QD-DLF approaches
demonstrate a bigger accuracy increase when
compared to those single modal deep learning
based vehicle re-identification methods (i.e.,
NuFACT [1], DenseNet121 [28], SCCN-
Ft+CLBL- 8-Ft [14], ABLN-Ft-16 [13], FACT
[2], GoogLeNet [29], and VGG-CNN-M-1024
[3]). The suggested QD-DLF technique
achieves much higher MAP, rank-1
identification rate, and rank-5 identification
rate than the best single mode deep learning
based vehicle re-identification system, namely
NuFACT [1]. While SCCN-Ft+CLBL-8-Ft
[14] and ABLN-Ft-16 [13] take perspective
variation into account, they do not clearly
demonstrate their advantage on the VeRi
database.

This is due to the fact that the training data for
CCN-Ft+CLBL-8-Ft [14] and ABLN-Ft-16
[13] is not optimal since not all vehicles in the
VeRi database are densely recorded by various
camera perspectives.

identifier
Finally, the suggested QD-DLF outperforms

the  state-of-the-art  handcrafted feature

TABLE 11
THE PERFORMANCE (%) COMPARISON OF THE PROPOSED QD-DLF representation approaCheS’ such as BOW-CN
AND MULTIPLE STATE-OF-THE- ART METHODS ON VERI [5]’ LOMO [4]’ and BOW_SFIT [30]

. " } . = =5
an:‘;;h;i_mf ::: R;;l'1 R(:l:ﬁ Both Fig. 5 and Table III compare the
Siamcsc-CNN+Pat LSTM [18]|58.27] 8349 | 90.04 performance of the proposed QD-DLF to that
PROVID [1] =542 5136 | 9511 of many state-of-the-art approaches on the
NuEACT + Plate-SNN [1] |50.87] 81.11 | 92.79 VehicleID database. One can easily see that
NuFACT + Plale-REC [1]  [48.55| 76.88 | 91.42 deep learning based techniques (such as DJDL
NuFACT [1] 48.47) 7676 | 91.42 [11], DenseNetl21 [28], Improved Triplet
DenseNet121 [25] 45.06) 8027 | 9112 CNN [12], DRDL [3], FACT [2], NuFACT
SLL:]::;H::H - i; ::E: zf:j [1], and.GoogLeNet [29]) are superior to more

FACT 2] 1575 5221 7288 conventional approaches.

GoogLeNet [17] 17.89 52,32 | 72.17

WGG-CNMN-M-1024 [7] 1276 4410 | 6263

BOW-CN [4] 12.20] 33.91 | 53.69

LAOMO [£] O6ad | 2533 | 4648

BOW-SFIT [1] 151 191 | 453
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. VHCETE VTN IS86 QL5 ' following sections, we provide the results of
CHCs Vi il O Vil Tl O Vil T2 these inVeStigatiOnS in gl‘eat detall

Can you tell me which directional deep
learning characteristic is most effective for re-
identifying vehicles? As can be shown in Fig.
6, D-DLF/A-DLF is superior than H-DLF/V-
DLF. What this suggests is that deep learning's
diagonal/antidiagonal directional characteristic

is more
TABLEN TABLE [V
T PeRFORMANCE (%) CoOMPARISOX OF THE PRoposED QD-DLF AND MuLripLE STaTeoF-THE- ART METHODS 08 VEHIcLEID THE PERFORMANCE (%) COMPARISONOF QD-DLF, DAH-DLF, DA-DLF
AND D-DLF 0N VER1 AND TEST2400 OF VEHICLEID
i Tesl) Tl T4 e
AP ke Rk A Rk Rk AP ek Rk AP Bank= a5 Methods VeRi Tesi2400 of VehiclelD
Poposed QODLF 1654 1232 {9248 1463 7066 | 390 || 644 | 8537 7319 s | 8825 MAP | Rank=1 |Rank=>5 || MAP | Rark=1 | Rank=3
DIDL{11] NA[ T2 [ 857 |[NA| 08 | 818 ||NA| 680 | 789 ||NA| T04 | 821 QD-DLF |61.83| BR.50 | 94.46 | 6841 64.14 | 8337
DeseNel2l [ 6835 6610 | 787 || 6139 | 7529 530 0m | 0.7 | o] 6532 7 DAH-DLF|60.31 88,62 | 9434 |[68.24 6388 | 83.72
Improved Tt CNN 12| N | 609 | 13 ([N | 662 | 923 || 632 | 700 ||| 664 | 820 DA-DLF |38.16] 87.10 | 9446 |66.90 62.53 | 8207
DRDL N 4891 {6671 | 4636 | 48 || 40 | somn || st | a0 D-DLF |53.26] 84.92 | 93.0% ||64.25 5964 | 80.11
FACT (] NIA 4055 | 67,96 || NUA | 4463 [ 64.19 || NIA| 3991 | 6049 (| NIA | 4469 | 6421
NEACT(] ] omom | e | n x| 5 | s ||| s i ) ) ) ) )
Goutea 1] | ] 190 v [ e[ oo e s ] s o more suited to re-identification of vehicles than
wovor Tz T n oo s o 528 T v e 57 the directed deep learning characteristic of
BONON T N 1t 220 20| 200 v 1o | o | om0 horizontal and vertical movement. We may
sowsir g (v e | e (vl s so (sl oo | (vl e | 3 partly ascribe this to two factors. First, even

though the automobile photographs of vehicles
are taken from a variety of angles, the subject

on this massive data set (for example, LOMO matter tends to retain a strong symmetry.
[4], BOW-CN [5], and BOW-SIFT [30]). As a
second point, the suggested QD-DLF approach
has better results than any other deep learning
based methods when tested under

Second, the average pooling that corresponds
to the diagonal or anti-diagonal orientation
may include a wider range of vehicle pictures
that have symmetry.

On the Test800, Testl1600, and Test2400
subsets of the VehicleID database, a number of
methods were compared, including DJIDL [11],

CMCs on VeRi

DenseNet121 [28], Improved Triplet CNN l:i eeeaad
[12], DRDL [3], FACT [2], NuFACT [1], and g y"f‘_g.:-e-*ad—“ f
GoogLeNet [29]. Thirdly, a comparison of the " p%: ‘o-fif e
various directional features of deep learning: : :i ?&f* o

2 AJ,..,
Additionally, we conduct an in-depth E :: _A
investigation of how each directional deep G w & MAP-5326, RI-34%2, RE-90.43 D-DLF
learning feature contributed to the overall sy A o oy
performance. Vertical, horizontal, diagonal, y s 0 15 20
and anti-diagonal deep learning features are er:k

labeled as H-DLF, V-DLF, D-DLF, and
ADLF, respectively, and their corresponding
findings on the VeRi and VehiclelD databases
are provided in Fig. 6 and Table IV. In the
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Fig. 6. The performance (%) comparison of
diagonal deep learning

feature (D-DLF), anti-diagonal deep learning
feature (A-DLF), horizonal deep learning feature
(H-DLF) and veridical deep learning feature (V-
DLF) on VeRi, (b) Test2400 of VehiclelD,
respectively. Figure 6: A comparison of diagonal,
anti-diagonal, horizontal, and veridical deep
learning features for a given task, in terms of their
performance (percent). VeRi, and b) the VehiclelD
Test2400.

TABLE V

THE PERFORMANCE (%) Comparison oF QD-DLE, D-DLF,
A-DLF, H-DLE, V-DLE, axp F-DLFs on VERI

Methods | MAP|Rank=1{Rank=5
QD-DLF |61.83| 88.50 | 94.46
D-DLF |33.26) 8492 ] 93.03
A-DLF |33.12) 84.56 | 9261
H-DLF |30.40) 83.13 ] 9237
V-DLE (3008 81.17 | 9112
F-DLF-256|40.99) 80.15 | 90.64
F-DLE-312 39.68) 80.21 | 89.87
F-DLE-128 (39,39 70.68 | 9112
F-DLE-1024(39.10) T9.86 | 89.33

features can indeed contribute to the improvement of the
performance.

In this study, we also compare the outcomes of the
proposed technique to those of directed deep
learning, to see how the two compare in terms of
both feature sets and overall performance learning
setup that emphasizes both depth and breadth in the
feature space.

ISSN: 0976-0172
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By adopting a Full connection layer in place of a
unidirectional pooling layer in the BDLFA, we may
construct this deep holistic feature learning setup.
For the comparable acquired characteristic, we use
the abbreviation F-DLF. Since the F-DLF may
generate  holistic characteristics of varying
dimensions, and since we cannot predict which
features would prove most useful in advance, we
end up with the results generated by the F-whole
DLF's connection layer. The F-DLF-128, F-DLF-
256, F-DLF-512, and FDLF-1024 all stand for the
equivalent learning configurations that generate
128, 256, 512, and 1024 dimensional holistic
features, respectively.

Table V shows that among the four variants of F-
DLF, F-DLF-256 achieves the largest MAP, but is
still inferior to V-DLF, our weakest directional
deep learning feature. Comparing V-DLF to F-
DLF-256, we find that it has a higher MAP (by
9.10%) and a higher rank-1 identification rate (by
1.02%). The suggested QD-DLF also outperforms
F-DLF-256 by a wide margin (20.84 percentage
points in MAP and 8.35 percentage points in rank-1
identification rate). This research shows that when
it comes to representing pictures of vehicles, the
directional deep learning features presented are
superior than the deep holistic learning features.

The Role of L2 Regularization: Using the VeRi
database as an example, we further investigate the
role of the L2 regularization weight parameter in
Eq. (6). Since VeRi does not offer a validation
subset, we randomly divided its 576-subject
training subset into two non-overlapping parts: Part
A comprises 376 subjects for training the proposed
approach, and Part B contains 200 subjects for
verifying the effect of the L2 regularization. It's
important to keep in mind that the regularization
weight parameter of each directional deep feature
learning network (i.e. DDFLN, ADFLN, HDFLN)

Page | 10


http://www.jbstonline.com/

ISSN: 0976-0172
Dr.Anbunathan etal, JBio sci Tech, Vol 11(4),2023, 01-13
Journal of Bioscience And Technology

ZHU et al.: VEHICLE RE-IDENTIFICATION USING QD-DLF

)
2
; 7
3
g
3
|
£S5
2 (-qony|
= ~d—D-DLF
&l A-DLF
- -O-H-DLF |
—£—V-DLF |

20 : '
0 0.0005 0.005 0.05 03
43

Fig. 7. The influence of the L regularization weight parameter « on VeRi

database.
To prevent over-tuning, the parameters (and
VDFLN) are both set to the same value. D-DLF, A-
DLF, H-DLF, and V-DLF stand for the deep
features learnt by Deep Convolutional Neural
Networks (DDFLN), Deep Activation Detection
Neural  Networks (ADFLN), and Deep
Convolutional Neural Networks (HDFL In other
words, VDFLN each.

The effect of varying the value of the parameter on
the efficiency of D-DLF, A-DLF, H-DLF, V-DLF,
and QD-DLF is shown in Fig. 7. First, a
comparison of the rank-1 identification rates
produced by D-DLF, A-DLF, H-DLF, V-DLF, and
QD-DLF reveals a striking similarity in their
performance variation tendencies. This is due to the
fact that they share a same underlying architecture
for deep feature learning. Performance of D-DLF,
A-DLF, H-DLF, V-DLF, and Q-DLF may be
shown to change with different values of the
parameter. The rank-1 identification rate varies
smoothly within the interval [0, 0.05].

However, the rank-1 identification rate declines
drastically when the threshold of 0.05 is crossed.
This suggests that any directed deep feature
learning network will suffer from diminished
discriminative power if the VeRi value is greater
than 0.05.

Analysis of Playing Time (Point No. 6) For vehicle
re-identification techniques, efficiency is crucial,
alongside accuracy. The comparable person re-
identification task [24] suggests measuring
performance using the feature extraction time
(FET) per picture. Table VI displays a comparison

www.jbstonline.com

between the proposed QD-DLF approach and
numerous state-of-the-art vehicle re-identification
methods in terms of running time, with all methods
implemented in the GPU mode.

To begin, it is clear that the suggested directional
deep learning features (i.e., D-DLF, A-DLF, H-
DLF, V-DLF) all have about the same execution
time. Each directional deep learning feature's FETs
are somewhat more time-consuming than those of
VGG-CNN-M-1024 [3], but on par with those of
GooglLeNet [29]. The FET of each directional deep
learning feature is also only around 17% of that of
the ultra-deep model DenseNetl121 [28], showing
that D-DLF, A-DLF, H-DLF, and V-DLF are all
much quicker than DenseNet121 [28].

Second, we investigate how long it takes for the
suggested QD-DLF to complete a calculation. The
FET of QD-DLF should be four times that of
comparison to each suggested unidirectional deep
learning feature.

TxE RUNNING TiME CoMpARISON OF THE PROPOSED (QD-DLF METH
AND MULTIPLE STATE-OF-THE-ART VEHICLE RE-IDENTIFICATIO
METHODS. FET REFRESENTS THE FEATURE EXTRACTION TIME

Methods IET (msec/image)
D-DLF 130
A-DLF 2304
H-DLF 2.2%
V-DLF 2312
(D-DLF 119
DenseNet 121 73] 13647
GoogLeNet [1] 135
VGG-CNN-M-1024 7] 1872

From Table VI, it is clear that the FET of QD-DLF
is almost 5 times higher than that of any of the
suggested directional deep-level ossessing a
figuring-out capacity. Since a quadruple directional
deep learning model is obviously bigger than a
single directional deep learning model, the
efficiency of creating the communication between
CPU and GPU concurrently is lower for the former
than for the latter. It is also worth noting that the
proposed QD-DLF has a FET that is 2.448ms faster
than DenseNet121 [28].

CONCLUSION
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In this study, we provide a method for re-
identifying vehicles using quadruple-directional
deep learning networks. To put it simply, the
quadruple-directional deep learning networks use
the same fundamental deep structure-based
learning framework with asymmetrical feature-
pooling-layers. Extraction of fundamental feature
maps from an input square car picture uses the
same basic deep learning architecture: a briefly and
densely linked convolutional neural network. The
proposed quadruple directional deep learning
network then iteratively applies a horizontal
average pooling (HAP) layer, a vertical average
pooling (VAP) layer, a diagonal average pooling
(DAP) layer, and an anti-diagonal average pooling
(AAP) layer to compress the basic feature maps
into horizontal, vertical, diagonal, and anti-diagonal
directional feature maps. To complete the process
of re-identifying vehicles, the resulting directional
feature maps are spatially normalized and joined to
form a quadruple directional deep learning feature.
When applied to vehicle re-identification, the
quadruple directional deep learning features learnt
by the proposed quadruple directional deep
learning network successfully resist the detrimental
influence of perspective fluctuations, leading to
considerably better performance. Extensive testing
on the VeRi and VehicleID databases demonstrate
the clear superiority of the proposed strategy over
numerous state-of-the-art vehicle re-identification
methods.
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